Three-step iterative methods with optimal eighth-order convergence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-step iterative methods with optimal eighth-order convergence

In this paper, based on Ostrowski’s method, a new family of eighth-order methods for solving nonlinear equations is derived. In terms of computational cost, each iteration of these methods requires three evaluations of the function and one evaluation of its first derivative, so that their efficiency indices are 1.682, which is optimal according to Kung and Traub’s conjecture. Numerical comparis...

متن کامل

Three-step iterative methods with eighth-order convergence for solving nonlinear equations

A family of eighth-order iterative methods for solution of nonlinear equations is presented. We propose an optimal three-step method with eight-order convergence for finding the simple roots of nonlinear equations by Hermite interpolation method. Per iteration of this method requires two evaluations of the function and two evaluations of its first derivative, which implies that the efficiency i...

متن کامل

A Family of Iterative Methods with Accelerated Eighth-Order Convergence

We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorith...

متن کامل

A Family of Optimal Derivative Free Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations

In this paper, modification of Steffensen’s method with eight-order convergence is presented. We propose a family of optimal three-step methods with eight-order convergence for solving the simple roots of nonlinear equations by using the weight function and interpolation methods. Per iteration this method requires four evaluations of the function which implies that the efficiency index of the d...

متن کامل

Three-Step Iterative Methods with Sixth-Order Convergence for Solving Nonlinear Equations

In this paper, we develop new families of sixth-order methods for solving simple zeros of non-linear equations. These methods are constructed such that the convergence is of order six. Each member of the families requires two evaluations of the given function and two of its derivative per iteration. These methods have more advantages than Newton’s method and other methods with the same converge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2011

ISSN: 0377-0427

DOI: 10.1016/j.cam.2011.01.004